LECTURE NOTES ON BINOMIAL THEOREM

By

Mritunjay Kumar Singh¹

Abstract

In this lecture note, we give detailed explanation and set of problems related to Binomial theorem.

Topic Covered: Binomial theorem for positive index. General and Middle term(s) of the Binomial Expansion.

1. Useful Definition

Before presenting the Binomial theorem, we need to define Binomial expression.

Definition 1. A two terms algebraic expression is called binomial expression.

Example 1. x + 7, x + 2a, etc.

1.1. Binomial Theorem

Theorem 1. If n is a positive integer, then

$$(x+y)^{n} = \binom{n}{0}x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \dots + \binom{n}{r}x^{n-r}y^{r} + \dots + \binom{n}{n}y^{n}.$$

In other words,

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r.$$

Remarks:

- The coefficients $\binom{n}{r}$ occuring in the binomial theorem are known as binomial coefficients.
- There are n+1 terms in the expansion of $(x+y)^n$.
- The number n is called index of the binomial.
- The n^{th} number of term is denoted by T_n .

Example 2. Find the number of terms in the expansions of $[(2x+3y)^2]^5$.

¹Lecturer in Mathematics, Government Polytechnic, Gaya, Bihar, India, Mobile : 9546595789

Solution 2. We have,

$$[(2x+3y)^2]^5 = (2x+3y)^{10}$$

Here, Index of the binomial is n = 10. Thus the number of terms in the expansion =n + 1 = 10 + 1 = 11.

Example 3. Find the number of terms in the expansions of $[(3x + y^2)^9]^4$

Solution 3.

We have,

$$[(3x+y^2)^9]^4 = (3x+y^2)^{36}$$

Here, Index of the binomial is n = 36. Thus the number of terms in the expansion =n + 1 = 36 + 1 = 37.

Exercise 1. Find the number of terms in the following expansions:

1. $(x+3)^8$ 2. $(a-2b)^{12}$

2. General Term of the Binomial Expansion

The $(r+1)^{\text{th}}$ in the expansion of $(x+y)^n$ is called general term of the binomial expansion. It is denoted by T_{r+1} and is defined as

$$T_{r+1} = \binom{n}{r} x^{n-r} y^r.$$

Example 4. Find the general term in the expansions of $(x + 3)^8$.

Solution 4. The given expression is $(x + 3)^8$. Hence, the general term of given expression is

$$T_{r+1} = \binom{8}{r} x^{8-r} 3^r.$$

Exercise 2. Find the general term in the following expansions:

1.
$$(a - 2b)^{12}$$

2. $(x^2 - yx)^{12}$, when $x \neq 0$.

3. Middle Term(s) of the Binomial Expansion

The number of terms in the binomial expansion of $(x + y)^n$ is n + 1. There are two cases arises for finding middle term(s):

Case-I: When n is even

In this case the number of terms in the binomial expansion is odd. So, there is only one middle term in the expansion, namely,

$$\left(\frac{n+2}{2}\right)^{\text{th}}$$
 term.

Case-II: When n is Odd

In this case the number of terms in the binomial expansion is even. So, there are two middle terms in the expansion, namely,

$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term and $\left(\frac{n+3}{2}\right)^{\text{th}}$ term.

Example 5. Find the middle term(s) in the expansions of $(\frac{x}{3} + 9y)^{10}$.

Solution 5. The given expression is $(\frac{x}{3} + 9y)^{10}$. Here, n = 10, which is even. So, the middle term of the expansion is

$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term = 6th term,

For 6^{th} term, we have

$$r+1=6 \implies r=5.$$

Hence, the middle term is

$$T_{6} = {\binom{10}{5}} \left(\frac{x}{3}\right)^{10-5} (9y)^{5}$$
$$= {\binom{10}{5}} \left(\frac{x}{3}\right)^{5} (9y)^{5}$$
$$= 61236 \ x^{5}y^{5}.$$

Exercise 3. Find the middle term(s) in the following expansions:

1. $\left(3x - \frac{x^3}{6}\right)^7$ 2. $\left(\frac{p}{x} + \frac{x}{p}\right)^9$.

4. Miscellaneous Exercise

- 1. Find the cofficient of x^5 in the expansion of $(x+3)^8$.
- 2. Find the value of a if the 17^{th} and 18^{th} terms of the expansion $(2 + a)^{50}$ are equal.

- 3. If p is a real number and if the middle term in the expansion of $\left(\frac{p}{2}+2\right)^8$ is 1120, find the value of p.
- 4. Find the term independent of x in the expansion of $\left(\frac{3x^2}{2} \frac{1}{3x}\right)^6$.
- 5. Which term in the expansion of $(x^3 + \frac{2}{x^2})^{15}$ is independent of x? Also find its value.
